Risk Analysis of Lab Bench
Top Processes to Ensure Safety in Smart Labs

2011 Labs 21 Annual Conference
Providence, RI

Presented by Lisa Mahar, CIH, CSP, RN, EH&S
University of California, Irvine

Large research university
$16M annual utilities budget
Lab buildings consume 2/3 of campus energy
Many energy initiatives to reduce carbon footprint
Goal

Balance energy savings & safety

Maximize Energy Savings

Without Compromising Safety
Learning Objectives

1. Centralized demand controlled ventilation (CDCV) overview
2. Lab bench top hazard screening process
3. Risk assessment criteria
4. Risk assessment-based air changes/hour (ACH) decision tree

Excluded from discussion:
- Fire and Mechanical Codes applicability
Centralized Demand Controlled Ventilation (CDCV)

- Air quality monitor varies lab ventilation rates depending on contaminant levels sensed by sensor suite
- Monitors and/or controls ACH
- Variable air volume (VAV) labs
CDCV Components

- Sensor Suite
- Information Management Server
- Web User Interface
- Web-Accessible Reports
- VAV Controller

Components:
- CO
- CO₂
- RH
- TVOCs
- Particles

Data

Internet

Air Data Router

Room Sensor
Air Changes (ACH)

- 4/2 ACH setback with occupancy sensing
- Sensor failure must “fail safe” to 6 ACH
 - Sensor suite does not detect all chemicals
 - Calibration frequency at 6 months
- Visual signal to occupant of ACH
- Emergency exhaust red button
Air Changes (ACH) Continued

- ACH reduction not for:
 - Fume hood driven labs
 - Heat load driven labs
 - High risk labs
 - Chemical dispensing/storage areas
Smart Lab “Safety Net”

- Emergency General Ventilation Purge “Red Button”
 - Fully opens general exhaust ventilation valves
 - Response within minutes
 - Integrated alarm system
 - Deactivates when button is pulled out
Bench Top Screening Process

- Conduct room by room hazard screening
 - Industrial hygienist (IH) evaluates worker exposure
 - Review chemicals/operations
 - Interview lab staff
 - Review chemical inventory
 - Review engineering controls
- Fume hood operations excluded
Bench Top Screening Process
Continued

- Compare screening data with risk assessment criteria
- Enter screening data in database
 - Indicate follow-up needed
 - No ACH reduction
High risk labs – No ventilation reduction

- Biosafety Level 3 (airborne biohazard)
- Highly toxic gases
- Special ventilation requirements
- Chemicals/operations identified as high risk by bench top assessment or follow-up exposure monitoring
Risk Assessment Criteria
Continued

- **Chemicals of concern**
 - Acutely toxic by inhalation
 - Asphyxiants
 - Anesthetic gases
 - Carcinogens
 - Reproductive toxins
 - Air contaminants that have occupational exposure limits (PELs, TLVs)
 - Strong odor producer
Industrial Hygiene Follow-up

- Follow-up for chemicals of concern
 - Lab staff exposure monitoring studies
 - Work with lab staff to improve work practices
 - Training/standard operating procedures
 - Ventilation reduction possible if exposures can be controlled (improved work practices)
 - ACH may be increased until work practices are improved
Industrial Hygiene Follow-up
Continued

- Follow-up for complaints or “other” issues of concern not previously identified (professional judgment)
Work Practice Improvements

- Use local exhaust ventilation for source control
- Substitute less hazardous chemical
- Obtain pre-packaged mixtures
- Reduce quantity/frequency
- Modify operation procedures
Lab Bench Top Risk Assessment-based ACH Decision Tree (qualitative)
Other Considerations

- **Good practice:**
 - Control contaminants at the “source”
 - Don’t rely only on general dilution for control
 - Review lab operations/chemicals
 - Communication with lab staff

- **ACH & exposure:**
 - Exposure limits are not based on ACH
 - No known correlation between ACH and exposure or disease
Challenges

- Lack of “universal” CDCV sensor for all chemicals
- Ongoing need for risk assessments of lab operations
- Incomplete chemical inventories
- Great variety of hazardous operations and chemicals
- Changes in research operations and staff
- Uncertainty of health effects of chemicals
- Future research needs unknown
- Restrictions on research operations not tenable
Challenges Continued

- EH&S resource demand for:
 - Ongoing need for hazard assessments
 - Exposure monitoring
 - Work practice corrections
 - Training
 - Potential complaint investigations
Next Steps

- Develop system to identify changes in lab operations
- Re-assess bench top operations:
 - New researchers arrive
 - Lab moves (notification)
 - Periodic
- Promote more current/complete chemical inventories
Conclusions

- Energy savings can be achieved without compromising safety
- Lab ACH determination requires:
 - Flexibility (evolving process)
 - Contaminant source control
 - Active EH&S involvement in risk assessment of lab operations with lab staff
 - Reassessment when lab changes occur
 - Current/complete chemical inventories
This concludes the University of California, Irvine presentation, “Risk Analysis of Lab Bench Top Processes to Ensure Safety in Smart Labs”