Risk Assessment of Lab Bench Top Processes to Ensure Safety in Smart Labs

Presented by Lisa Mahar, CIH, CSP, RN, EH&S
UC/CSU Laboratory HVAC Design for Energy Efficiency Workshop 2012
Learning Objectives

1. Laboratory System – Primary/Secondary Controls
2. Centralized demand controlled ventilation (CDCV) overview
3. Lab bench top hazard screening process
4. Risk assessment criteria
5. Risk assessment-based air changes/hour (ACH) decision tree
Laboratory is a “System”

HVAC elements must work together as a system for contaminant control:

1. Primary control – Local exhaust ventilation (at source of contaminant generation)
2. Secondary control – Dilution of room air (ACH)

A key focus of the bench top risk assessment is to drive contaminants into primary controls whenever possible.
Primary (Source) Control – Fume Hood
Primary (Source) Control - Snorkel
Primary (Source) Control - Glove Box
Laboratory is a “System”

For contaminant control, critical to have:

- All HVAC elements in balance and maintained
- Fume hood commissioning & placement
- Good air mixing to avoid contaminant build-up & achieve effective dilution
Dilution – Secondary Control
Centralized Demand Controlled Ventilation (CDCV)

- Air quality monitor varies lab ventilation rates depending on contaminant levels sensed by sensor suite
- Monitors and/or controls ACH
- Variable air volume (VAV) labs
CDCV - Sensors

<table>
<thead>
<tr>
<th>Type</th>
<th>Sensors</th>
<th>Activation Range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>TVOC</td>
<td>PID (10.63V)</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>TVOC</td>
<td>Metal Oxide (MOS)</td>
<td>0.3</td>
<td>3.0</td>
</tr>
<tr>
<td>CO₂</td>
<td>NDIR</td>
<td>300</td>
<td>3,000</td>
</tr>
<tr>
<td>Particulate</td>
<td>Optical</td>
<td>500,000</td>
<td>5,000,000</td>
</tr>
<tr>
<td>CO</td>
<td>Electrochem</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>
Implementing CDCV

- 6+ACH \rightarrow 4/2 ACH setback with occupancy sensing
- Sensor failure must “fail safe” to 6 ACH
 - Sensor suite does not detect all chemicals
 - Calibration frequency at 6 months
- Visual signal to occupant of ACH
- Emergency exhaust red button
Smart Lab “Safety Net”

- Emergency General Ventilation Purge “Red Button”
 - Fully opens general exhaust ventilation valves
 - Response within minutes
 - Integrated alarm system
 - Deactivates when button is pulled out
Implementing CDCV

- Energy savings can be achieved without compromising safety
- Lab ACH determination requires:
 - Active EH&S involvement in bench top risk assessment of lab operations with lab staff
 - Contaminant source control
 - Reassessment when lab changes occur
 - Current/complete chemical inventories
Implementing CDCV

• ACH reduction not for:
 – Fume hood driven labs
 – Heat load driven labs
 – High risk labs
 – Chemical dispensing/storage areas
Step 1 - Lab Bench Top Screening Process

Conduct room-by-room hazard screening

– Industrial hygienist (IH) evaluates worker exposure
– Review chemicals inventory/operations
– Interview lab staff
– Review engineering controls
– Focus is outside of fume hood
Lab Bench Top Screening Process

• Compare screening data with risk assessment criteria

• Enter screening data in database and indicate if:
 – follow-up needed
 – No ACH reduction
Risk Assessment Criteria

High-risk labs – no ventilation reduction
- Biosafety Level 3 (airborne biohazard)
- Highly toxic gases
- Special ventilation requirements
- Chemicals/operations identified as high risk by bench top assessment or follow-up exposure monitoring
- Fire area control limits exceeded
Risk Assessment Criteria

• Chemicals of Concern
 – Acutely toxic by inhalation
 – Asphyxiants
 – Anesthetic gases
 – Carcinogens
 – Reproductive toxins
 – Air contaminants that have occupational exposure limits (PELs, TLVs)
 – Strong odor producers
Risk Assessment Criteria

Fire Concern

- Flammables/combustibles/toxics - amounts stored over fire control area limits
- 6 ACH at all times
- Reduce amounts!
Risk Assessment Criteria

Animal Allergen Concern

Airborne Allergens (proteins) from animal dander

– No exposure limits for allergens
– 6+ ACH at all times in 24/7 animal areas

The most allergenic animals are:

– Mice
– Rats
– Guinea pigs
Step 2 – Industrial Hygiene Follow-Up

Post Initial Risk Assessment

- Follow-up for chemicals of concern
 - Lab staff exposure monitoring studies
 - Work with lab staff to improve work practices
 - Training/Safety Operating Procedures
Industrial Hygiene Follow-up

• Follow-up for complaints or “other” issues of concern not previously identified (professional judgment)
Work Practice Improvements

- Use local exhaust ventilation for source control
- Substitute less hazardous chemical
- Obtain pre-packaged mixtures
- Reduce quantity/frequency
- Modify operation procedures
Step 2 – Industrial Hygiene Follow-Up

Post Initial Risk Assessment

• Follow-up for chemicals of concern
 – Ventilation reduction possible if exposures can be controlled (improved work practices)
 – ACH may be increased until work practices are improved
High or Low Hazard Lab?
Overnight Set-Backs for “No Ventilation Reduction” Labs
Risk-based
ACH Decision Tree
(qualitative)

START
(6+ACH)

Was the initial reason to not reduce ventilation based on use of a flammable/combustible?

NO

Are there animals in the lab for at least 24 hrs at a time?

NO

Are quantities of flammable/combustibles in the lab over allowed storage limits?

YES

No Overnight Setbacks (6+ ACH)

End

YES

Vertebrate?

NO

Operation/Procedure performed overnight?

NO

NO

YES

Overnight Setbacks (4 ACH)

YES
Other Considerations

• **Good practice:**
 – Control contaminants at the “source”
 – Don’t rely only on general dilution for control
 – Review lab operations/chemicals
 – Communication with lab staff

• **ACH & exposure:**
 – Exposure limits are not based on ACH
 – No known correlation between ACH and exposure or disease
Challenges

- Lack of “universal” CDCV sensor for all chemicals
- Ongoing need for risk assessments of lab operations
- Changes in research operations and staff
- Incomplete chemical inventories
- Great variety of hazardous operations and chemicals
- Uncertainty of health effects of chemicals
Challenges

EH&S resource demand for

- **Ongoing** need for hazard assessments
- Exposure monitoring
- Work practice corrections
- Potential complaint investigations
- Training
Next Steps

• Develop system to identify changes in lab operations
• Re-assess bench top operations:
 – New researchers arrive
 – Lab moves (notification!)
 – Periodic re-assessments

• Promote current/complete chemical inventories

\textit{Lowered ACH is not “sustainable” without EH&S risk assessments and management of change!}
Lab ACH Reductions

Based on Risk Assessments Results to Date

- 13 lab buildings (~250 labs)
- 1540 lab rooms assessed
- 1346 lab rooms - reduced ACH (~87%)
- 194 lab rooms - not reduced ACH (~13%)
Conclusions

• Energy savings can be achieved without compromising safety

• Lab ACH determination requires:
 – Flexibility (evolving process)
 – Contaminant source control
 – Active EH&S involvement in risk assessment of lab operations with lab staff
 – Reassessment when lab changes occur
 – Current/complete chemical inventories