Phoenix Controls X30 Series Fume Hood Monitors (FHMs) are used on fume hoods with Phoenix Controls valves for airflow control. Airflow control on these fume hoods is achieved with the use of constant volume valves (CVV), two-position valves (PEV or BEV) or variable air volume valves (VAV). Each FHM provides two primary functions: indication of hood exhaust operating condition and alarming. In VAV systems, each FHM also provides face velocity control and optional energy-saving features.

SPECIFICATIONS

Enclosure
- Dimensions: 2.5” W x 6” H x 1.5” D (64 mm x 152 mm x 38 mm)
- Color: White
- IP44 compliant

Operating Range
32-122 °F (0-50 °C) ambient
10-90% RH, non-condensing
8202’ (2500 m) altitude

Power Requirements for Each Unit
24 Vac, ±10%, 50-60 Hz, 10 VA
±15 Vdc, ±5%, 220 mA

Inputs and Outputs
See table in “Features” section on page 2 for model-specific inputs and outputs.

Input to Optional Use LED
- Yellow LED indicates unique customer conditions
- Wired directly from customer’s device to two dedicated conductors within the eight-wire signal cable
- Limited to ≤ 12 Vdc with maximum current draw of 0.012 amps. Customer must install a 1 K Ω resistor in series with input signal.
- Visual indication only, no audible

Monitoring Points
- Airflow exhaust device command
- Actual exhaust airflow
- 0-10 Vdc alarm:
 - 0 Vdc indicates normal operation
 - 5 Vdc indicates incorrect airflow
 - 10 Vdc indicates low differential static pressure
- Sash position: 0-10 Vdc
- User status
- 10 K Ω minimum input impedance for monitoring system

Backward Compatibility
X30 Series Fume Hood Monitors are backward compatible with earlier standard models of Phoenix fume hood monitors.

Readout (FHM631 only)
The display shows one of the following measurements:
- Cubic feet per minute (CFM)
- Meters cubed per hour (m³/h)
- Liters per second (l/s)
- Feet per minute (fpm)
- Meters per second (m/s)

Power Loss Alarm Option
(±15 Vdc powered monitor only)
Indicates loss of power to the fume hood system.
- During power failure, a red LED flashes once every 4 sec
- Accompanied by short audible alarm “chirp”
- Alarm continues for at least 64 hours or until power is restored

Dimensions
4.75” W x 4” H x 4.75” D (121 mm x 102 mm x 121 mm)

Color
- Black enclosure
- Yellow switch

Operating Range
32-122 °F (0-50 °C) ambient

Power Requirements
±15 Vdc @ 0.015 amp
More details on this option are in the “Features” section on page 2.

FCC Compliance
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules.

If the X30 Series Fume Hood Monitor is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

ORDERING GUIDE

BASE NUMBER

TYPE OF FUME HOOD MONITOR
430 = Base monitor, EXV applications
530 = CVV, PEV or BEV applications
631 = Face velocity monitor, EXV applications

FACEPLATE LANGUAGE
- DAN = Danish
- ENG = English
- FRC = French Canadian
- GER = German
- JPN = Japanese
- NOR = Norwegian
- SWE = Swedish
- SWI = Swedish

OPTIONS
- DFT = Drive failure test (FHM430 only)
- DIV = Diversity LED to be driven by external contact closure from a Celeris system or the BMS.
- PLA = Primary (Available only on FHMs. Must be ordered with at least one secondary.)
- PRI = Power Loss Alarm (±15 volt only; see note below)
- RMT = Recess mounting kit
- SEC = Secondary (Available only on FHM430. Must be ordered with primary.)

NOTE: By ordering the add-on option “PLA,” you will receive a separate Power Loss Alarm board and box that also mounts on top of the hood. This board interfaces to an X30 Series Fume Hood Monitor that includes an additional red LED with “Power Failure Alarm” text. This unit can be installed on DC-powered monitors only.

TABLE OF CONTENTS
Specifications and Ordering Guide......................1
Features..2
Applications: Hood Control............................4
Applications: Energy-saving............................5
Installation..6
Points and Wiring...9
Maintenance and Troubleshooting....................14

See wiring diagrams
FEATURES

- **Face Velocity or Flow Display**—Indicates the face velocity or flow of the hood. (Available only on the FHM631.)

- **Standard Operation LED**—When this LED is on, it indicates the hood is operating at the standard face velocity or flow.

- **Standby Operation LED**—When this LED is on, it indicates the hood is operating at a lower face velocity or flow (active only with a ZPS).

- **Flow Alarm/Drive Failure LED**—Indicates unsafe airflow condition when it is on.

- **Mute button**—Push the button to silence an alarm. The Flow Alarm LED will remain on. Mute mode is reset when the alarm conditions clear.

- **Emergency Exhaust button with LED**—Push this button to activate the emergency exhaust mode. The alarm will sound and the LED at the left of the Emergency Exhaust button will blink. In this mode, exhaust air is at its maximum flow. *(NOTE: On constant volume hoods, this button is used only to test the alarm circuit, not modulate the exhaust valve.)* Push the button again to turn off the emergency exhaust/test mode.

- **Light sensor**—Detects the light level in the room. Triggers the energy waste alert, if configured. (Available only on the FHM631.)

OPTIONAL FEATURES

- **Diversity Alarm LED**—Alerts lab users to reduce the total flow by closing their sashes. This visual alarm is triggered when the flow demand exceeds the flow limit and a diversity alarm is generated by the Celeris system or the BMS.

- **Power Failure Alarm LED**—Activates when there is a loss of power. Used in conjunction with the Power Loss Alarm (PLA). With this option, a separate PLA module is provided with the monitor.

 The optional PLA circuit:

 - Has a sealed lead acid battery that uses ±15 Vdc to recharge the battery while the system is powered. The battery recharges enough in 8 hours to power the alarm circuit for 24 hours. The battery's expected service life is five years.
 -Detects the loss of ±15 Vdc system power. Not available for 24 Vac powered monitors.
 -Trips a solid-state relay that causes the battery to provide power to the monitor's alarm circuit.
 -Drives the audible alarm and LED on the monitor to indicate loss of power.

 The DIN standard requires PLAs on fume hood monitors, as well as periodic functional testing. Therefore, we provide a test button on all PLA option enclosures. Units can be tested by pushing and holding the test button for at least four seconds. This cuts the system's power, trips the relay and tests the battery and alarm circuitry. No other maintenance is required.

 NOTE: The PLA must be powered by the same ±15 Vdc that powers the monitor.
<table>
<thead>
<tr>
<th>FEATURE/OPTION</th>
<th>DESCRIPTION</th>
<th>CV</th>
<th>Two-position</th>
<th>VAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face velocity display</td>
<td>Displays the current face velocity setting in either English or metric units.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Operating mode LED</td>
<td>Specifies use of hood.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency exhaust LED</td>
<td>Indicates that the emergency exhaust has been activated.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Caution flow alarm</td>
<td>Alarm due to either pressure alarm, valve jam alarm failure.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spare or Diversity LED</td>
<td>Customer specified LED (spare) or diversity alarm condition has been initiated.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency exhaust button LED</td>
<td>Emergency exhaust button has been pushed.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Setback LED</td>
<td>Setback mode has been activated.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power loss LED</td>
<td>Power loss mode has been activated.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency exhaust override button</td>
<td>Provides a means of activating the emergency exhaust.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mute button</td>
<td>Provides a means of muting the audible alarms.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Light sensor</td>
<td>Activates energy waste alert.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

FACEPLATE

<table>
<thead>
<tr>
<th>FEATURE/OPTION</th>
<th>DESCRIPTION</th>
<th>CV</th>
<th>Two-position</th>
<th>VAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.O. microswitch input</td>
<td>Activates the two-state command to the valves.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sash position input</td>
<td>Activates the two-state or variable air volume (VAV) command to the valves.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sash opening alarm setting</td>
<td>Sets the sash height alarm set point.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Two-position switch point setting</td>
<td>Sets the trip point for the two-state command operation.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Standby mode input (e.g., ZPS)</td>
<td>Activates standby mode.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Switch input</td>
<td>Activates decommission mode.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Emergency exhaust (locally or remotely)</td>
<td>Ability to activate emergency exhaust with digital input.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VAV hood exhaust command output</td>
<td>Command output to the exhaust source (valve).</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VAV drive command output</td>
<td>Command output to a fan drive.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>24 Vdc relay output two-position mode</td>
<td>24 Vdc relay output to command 24 Vdc solenoids for two-position application.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Primary-secondary option (e.g., teaching hood)</td>
<td>Configures monitor for either primary or secondary control of a teaching hood.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Standby velocity setting</td>
<td>Sets the standby mode velocity.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Auto alarm mute</td>
<td>Audible alarms will mute automatically after 20 seconds when this function is enabled.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mute duration setting</td>
<td>Allows for resounding audible alarms after the Mute function has been activated. Adjustable from 1-10, 15, or 20 minutes.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sound volume setting</td>
<td>Adjust the sound volume. Two settings are available: high and low.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power loss alarm</td>
<td>Allows for power loss module that will display power loss alarm when the monitor has lost main power (+15 Vdc only).</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spare LED control</td>
<td>User-defined LED that can be engaged externally by means of a digital input.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Broken sash alarm</td>
<td>Alarm is generated when the sash sensor's signal cable has broken or when a vertical sash sensor (VSS110) retracting cable has detached.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>±15 Vdc or 24 Vac power</td>
<td>May be powered by either AC or DC voltage.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

CONTROL

<table>
<thead>
<tr>
<th>FEATURE/OPTION</th>
<th>DESCRIPTION</th>
<th>CV</th>
<th>Two-position</th>
<th>VAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood exhaust command/emergency exhaust</td>
<td>0-10 Vdc signal represents command or > 10 Vdc represents activation of emergency override.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hood exhaust feedback</td>
<td>0-10 Vdc scaled feedback signal.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alarm signal</td>
<td>0, 5, or 10 Vdc alarm signal generated at the valve can be monitored at the fume hood monitor.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Normally open (NO) alarm relay</td>
<td>NO contact output that de-energizes during alarm condition.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sash position</td>
<td>0-10 Vdc signal proportionally represents sash position from fully closed to fully open.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hood decommissioned</td>
<td>Monitors hood decommission command.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>User status</td>
<td>Monitors Zone Presence Sensor's (ZPS') activity.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Faceplates are available in English, Danish, French Canadian, French, German, Japanese, Norwegian and Swedish.
** Does not modulate exhaust CV valve, but allows the operator to test the alarm circuit.
*** Cannot use this external input with decommission mode via the external switch or BMS command.
† Options
‡ Contact your representative to communicate details.
APPLICATIONS: HOOD CONTROL

Variable Air Volume (VAV) Fume Hoods (FHM430 and 631)

Fume hood containment is accomplished by maintaining proper face velocity through the variable sash opening. Phoenix Controls fume hood monitors can be used on manifolded exhaust systems (with Phoenix Controls valves) and on individual exhaust systems (with a variable speed drive by others).

Functions
- **Constant face velocity control**—The goal is to maintain a constant face velocity (FV) as the sash opening varies. Since the FV set point is known, a change in sash area causes a linear change in exhaust flow (FV x Area = Flow command).
 Example: 5 ft² x 100 ft/min = 500 ft³/min (or 0.5 m² x 0.5 m/s x 3600 s/hr = 900 m³/hr)
- **Setback of face velocity**—Under many conditions, the face velocity can be set back to provide safe containment when the hood area is vacated. Setback face velocity is adjustable to field conditions—typically between 60-100 fpm (or 0.3-0.5 m/s). (See the Zone Presence Sensor Product Data Sheet for more details.)
- **Alarms**—The FHM430 and 631 monitors provide indication of a fume hood’s operation. Alarms include:
 - Insufficient differential static pressure as detected by the valve’s pressure switch
 - Incorrect airflow alarm (sash command ≠ closed-loop feedback)
APPLICATIONS: HOOD CONTROL (CONTINUED)

Constant Volume (CV) and Two-state Fume Hoods (FHM530)
A Phoenix Controls (constant volume) CVV series airflow control valve provides the fume hood with a steady constant exhaust flow, independent of duct pressure changes. The two-state airflow control valve (PEV or BEV series) provides two-position exhaust control based on an operator’s presence at the fume hood.

Functions
- **Alarm**—The FHM530, together with a differential pressure switch mounted on a Phoenix Controls airflow valve, indicates a fume hood’s operation. An optional sash opening alarm may be used with a sash sensor or sash switch.
- **Two-position control**—The FHM530, together with a Zone Presence Sensor and a Phoenix Controls PEV or BEV series airflow control valve with an on-board solenoid, provides two-position exhaust control based on an operator’s presence at the fume hood. Other switching mechanisms, such as a sash sensor or sash switch, may be applied.

APPLICATIONS: ENERGY-SAVING

Face Velocity Setback (FHM430, 530, and 631)
Under many conditions, the face velocity can be set back to provide safe containment when the hood area is vacated. Setback face velocity is adjustable to field conditions—typically between 60-100 fpm (or 0.3-0.5 m/s). (See the Zone Presence Sensor Product Data Sheet for more details.)

Energy Waste Alert (FHM631)
The FHM631 is equipped with an energy waste alert, indicating the sash is open and the room is dark (adjustable light intensity level). The display shows “ENRG,” and an audible alarm sounds until the sash is closed or the lights are illuminated.

Fume Hood Decommissioning Mode (FHM631)*
The fume hood decommissioning mode on the FHM631 allows a fume hood to be decommissioned when it is not in use and the sash is fully closed. The exhaust flow is reduced below the fume hood’s minimum to the valve’s minimum flow (e.g., 90 CFM for a 12-inch valve), and the display shows “OFF.” This mode can be initiated in one of three ways:
1. Through pushbuttons on the monitor’s faceplate. Press and hold the Emergency Exhaust and Mute buttons for three seconds. The display will flash “OFF?” Confirm by pressing the Mute button.
2. Through the external momentary switch (by others)
3. Through the BMS network command

The mode is exited automatically when the sash is opened.

* NOTES:
- Decommission mode cannot be used in drive applications.
- Proper standard operating procedures (SOPs) must be in place to remove all chemicals from the fume hood before it is decommissioned.
INSTALLATION

The X30 Fume Hood Monitor Series is available with two mounting options: surface and flush.

Surface Mount Option

Required materials:
- Fume hood monitor, X30 series
- Phoenix Controls room wiring diagrams
- Two zinc-plated hex washer head slotted sheet metal screws, Type A

Installation steps:

4. Use the mounting template to mark the points for attaching the fume hood monitor to the fume hood (see Figure 1).
5. Unsnap the front cover from the monitor:
 - Loosen the bottom of the monitor housing and rotate it slightly upward.
 - Gently slide the enclosure up to release the two tabs inside the top of the monitor housing from the two grooves on the monitor base.
6. Set the monitor housing aside.
7. Using the enclosure base as a template, mark the mounting holes at both ends. Be certain the fume hood monitor assembly is oriented as indicated in the figure on the right. Set the enclosure base aside.
8. Drill pilot holes at the marked mounting holes.
9. Mount the monitor base to the fume hood using two sheet metal screws (see Figure 2).
10. Run the cable through the mounting plate and strip back the conductors.
11. Remove the connectors from the monitor housing.
12. Complete the terminations to the connectors (refer to the wiring diagrams provided).
13. Reinstall the connectors in the monitor housing.
14. Reattach the monitor housing to the monitor base (see Figure 3):
 - Insert the two tabs at the top of the monitor housing in the grooves at the top of the monitor base.
 - Rotate the monitor housing downward and snap the bottom of the cover onto the tabs in the monitor base to secure it.

![Figure 1. Fume Hood Monitor mounting template (surface mount).](image)

![Figure 2. Attaching the Fume Hood Monitor to the fume hood (surface mount).](image)

![Figure 3. Reattaching the Fume Hood Monitor monitor housing to the base.](image)
Recess Mount Option

Required materials:
- Fume hood monitor, X30-RMT series (includes recess mounting bracket and screws)
- Phoenix Controls room wiring diagrams
- Cable, based on wiring diagram (not provided by Phoenix Controls)

Installation steps:
1. Use the recess mounting template to mark the area for cutout and mounting holes for attaching the fume hood monitor to the fume hood (see Figure 4).
2. Cut a square hole, as necessary, for the recess mounting kit.
3. Mark the holes for mounting the bracket:
 - Using the recess mounting bracket as a template, place the bracket in the cutout section of the fume hood and mark locations of holes required for attaching the bracket to the fume hood.
 - Set the bracket aside.
4. Drill .125" (.32 cm) pilot holes for mounting screws.
5. Unsnap the front cover from the monitor base:
 - Loosen the bottom of the monitor housing and rotate it slightly upward.
 - Gently slide the enclosure cover up to release the two tabs inside the top of the monitor housing from the two grooves on the monitor base.
6. Set the enclosure cover aside.
7. Run the cable through the back of the monitor base.
8. Remove the connectors from the monitor housing.
9. Complete the terminations to the connectors (refer to provided wiring diagrams).
10. Reinstall the connectors in the monitor housing.
11. Attach the enclosure cover to the monitor base:
 - Insert the two tabs at the top of the enclosure cover in the grooves at the top of the monitor base.
 - Rotate the enclosure cover downward and snap the bottom of the cover onto the tabs in the monitor base to secure it.
12. Attach the monitor to the recess mounting bracket (see Figure 6 on the next page):
 - Slide the monitor assembly into the mounting bracket from the back.
 - Insert the L-strap into the top slot on the recess mounting bracket as shown.
 - Rotate the L-strap and slide it downward through the bottom slot in the recess mounting bracket.
INSTALLATION (CONTINUED)

Recess Mount Option (continued)

13. Mount the monitor and bracket assembly to the fume hood (see Figure 5 on the previous page):
 - Slide the assembly into the cutout area.
 - Using the mounting screws provided, attach the bracket to the fume hood.

Retrofit Jobs

Required materials:
 - Fume hood monitor, X30 series (includes recess mounting bracket assembly and screws)
 - Phoenix Controls room wiring diagrams
 - Cable, based on wiring diagram (not provided by Phoenix Controls)

Installation steps:
1. Use the existing monitor to cut out hole and screw pilot holes from the previous FHM X10 Series monitor installation. Ensure that the dimensions of the cutout and mounting holes match those given here (see Figure 7).
2. Follow steps 5-12 from the standard Recess Mount installation procedure above.
3. Mount the monitor and bracket assembly to the fume hood (see Figure 8):
 - Slide the U-nut (included) over the existing mounting holes with the spring side inward.
 - Slide the assembly into the cutout area.
 - Using the mounting screws provided, attach the bracket to the fume hood.

Phoenix Controls Wiring Recommendations
 - The fume hood monitor and exhaust valve should be powered from the same source.
 - If control over the fume hoods is important during a power failure or if airflow conservation is required, fume hood monitors should be placed on backup power; otherwise, the fume hood valve defaults to its fail-safe state.
 - Use cables recommended by Phoenix Controls.
 - Stranded wire is strongly recommended for ease of installation.
 - Follow good wiring practices:
 - Do not run the signal cable in the same conduit or wireway as the power cables.
 - If the signal cable must cross power cables, it is best to do so at a 90-degree angle.
 - Shield or drain wires, if required, should be wrapped with insulating tape to prevent contact with exposed conductors or contacts.
 - Maintain a consistent color code or polarity all the way through the wiring system.
 - All connections to the Celeris valve controller (LVC) must meet the requirements of an NEC Class 2 circuit.
 - Local and national electrical codes take precedence.
FHM430 and 631

Monitor Termination Points

![Monitor Termination Points Diagram](image)

Typical Wiring Diagram

Variable Air Volume (VAV) Application

![Typical Wiring Diagram](image)

Terminal Block Points

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB2</td>
<td>Sash Sensor</td>
<td>Analog Ground</td>
<td>—</td>
<td>Decommission Output</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TB4</td>
<td>24 Vac H/+15 Vdc</td>
<td>Functional Ground</td>
<td>24 Vac N/-15 Vdc</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes:
1. Eight-conductor wire is Belden 9421 (22 AWG) or equivalent. (Tape back unused conductors.)
2. Sash sensor is provided with two-conductor cable. See combination sash sensors for exception.

See pages 12-13 for DC wiring details, as well as the wiring of options and ancillary equipment.
Points and Wiring (continued) (see submittal wiring diagram for project-specific details)

FHM530

Monitor Termination Points

Constant Volume Application

COMPONENTS

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>IN for DC solenoid</td>
</tr>
<tr>
<td></td>
<td>OUT for AC solenoid</td>
</tr>
</tbody>
</table>

TERMINAL BLOCK POINTS

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1</td>
<td>+12 Vdc</td>
<td>Analog Ground</td>
<td>External Emergency</td>
<td>NOV Command</td>
<td>NCV Command</td>
<td>Pressure Switch</td>
<td>User Status</td>
<td>Sash Signal</td>
</tr>
<tr>
<td>TB2</td>
<td>Sash Sensor</td>
<td>Analog Ground</td>
<td>—</td>
<td>—</td>
<td>Power Loss Input</td>
<td>Spare LED (+)</td>
<td>Spare LED (-)</td>
<td>—</td>
</tr>
<tr>
<td>TB3</td>
<td>Solenoid Command</td>
<td>Common</td>
<td>Alarm NO</td>
<td>Alarm Common</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TB4</td>
<td>24 Vac H/ +15 Vdc NOV/NCV Common</td>
<td>Functional Ground</td>
<td>24 Vac N/-15 Vdc</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Requirements for transformers:
- Secondary power shall be fused externally to current limit of 4 amps, in accordance with NEC CL2 power requirements. Thermal interrupts are not recommended.
- Do not earth ground secondary transformers.
- Maximum cable length for 96 VA load is 110’.
- Each pressurization zone shall have a dedicated single-phase primary circuit or a secondary circuit disconnect.

See page 12 for DC wiring details, as well as the wiring of options and ancillary equipment.
Two-state Application: AC Solenoid

FHM530

Two-state Application: DC Solenoid

FHM530

Notes:
1. For AC-powered solenoid, two-position applications, you must install a field jumper between TB3-1 and TB4-3 (not required for DC-powered solenoids).
2. AC solenoids require the fume hood monitor to have AC power. DC solenoids require the fume hood monitor to have DC power.
POINTS AND WIRING (CONTINUED) (see submittal wiring diagram for project-specific details)

Wiring of Options and Ancillary Equipment for X30 Fume Hood Monitor Series

FHM430 Primary/Secondary Wiring (for AC-powered units)

FHM430 Primary/Secondary Wiring (for DC-powered units)

FHM430/631/530 External Emergency Override, Method 1

FHM430/631/530 External Emergency Override, Method 2

FHM430/631/530 Power Loss Alarm

FHM430/631/530 Optional/Diversity LED

FHM530 Alarm Relay

Zone Presence Sensor (ZPS100 Series)

X30 Series: DC Wiring Details

NOTE: The Power Loss Alarm unit will work only if powered by the same DC power source serving the monitor. AC-powered monitors cannot have a Power Loss Alarm.

NOTE: ZPS100 series units can be powered by only DC voltage. If the FHMX 30 is powered by AC, then separate power must be brought to the ZPS100 unit.
Decommission Mode Wiring for FHM631 (in addition to the wiring shown on page 9)

Decommission Mode through the Fume Hood Monitor’s Pushbutton

![Diagram](image1)

Decommission Mode through a Momentary External Switch

![Diagram](image2)

Decommission Mode through a BMS Command

![Diagram](image3)

Note: Do not use this configuration if the LVC and fume hood monitor are using separate power sources.
MAINTENANCE

Phoenix Controls fume hood monitors require no ongoing preventative maintenance. Once the field engineer has completed the field setup, the monitors will provide years of continuous operation.

<table>
<thead>
<tr>
<th>Replacement Part</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHM631 board</td>
<td>860-200-108</td>
</tr>
<tr>
<td>FHM630 board</td>
<td>860-200-102</td>
</tr>
<tr>
<td>FHM530 board</td>
<td>860-200-109</td>
</tr>
<tr>
<td>FHM430 board</td>
<td>860-200-111</td>
</tr>
<tr>
<td>FHM430 primary board</td>
<td>860-200-110</td>
</tr>
<tr>
<td>FHM430 secondary board</td>
<td>860-200-112</td>
</tr>
<tr>
<td>X30 recess mount retrofit kit (replaces X10 models with X30)</td>
<td>260-270-004</td>
</tr>
<tr>
<td>X30 recess mount kit</td>
<td>260-270-005</td>
</tr>
</tbody>
</table>

TROUBLESHOOTING

Phoenix Controls fume hood monitors alert the operator of alarm conditions. Generally, this alarm is caused by a problem condition in the exhaust duct (e.g., fan failure). A trained facilities person may troubleshoot the system from the monitor with a digital voltmeter and perhaps a magnehelic gauge.

Alarms

The types of alarms for the X30 Series Fume Hood Monitor, the audible and visual cues for each alarm, and the purpose for each alarm are listed in the table below.

<table>
<thead>
<tr>
<th>Type of Alarm</th>
<th>Alarm Indicators</th>
<th>Signals (as seen in analog valve systems)</th>
<th>Reason for Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not commissioned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Operation—Fast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Alarm—Fast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>631 Display—Er-c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The unit requires commissioning.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low differential static pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Alarm—Slow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHM631 display—Blank</td>
<td>Fast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>TB1, 6 = 10 Vdc</td>
<td></td>
<td>The hood’s pressure switch is open (FHM631 and 430 only).</td>
</tr>
<tr>
<td>Flow Alarm—Slow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td>The hood’s pressure switch is open (FHM530 only).</td>
</tr>
<tr>
<td>Incorrect airflow (i.e., valve jam)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Alarm—Fast</td>
<td>Slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>TB1, 6 = 5 Vdc</td>
<td></td>
<td>The valve's position is jammed (FHM631 and 430 only).</td>
</tr>
<tr>
<td>Sash opening alarm</td>
<td>Flow Alarm—Slow</td>
<td>Slow</td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>TB1, 6 = 0 Vdc***</td>
<td></td>
<td>The sash opening exceeds the calibrated alarm set point.</td>
</tr>
<tr>
<td>Broken sash sensor alarm</td>
<td>Flow Alarm—Fast</td>
<td>Fast</td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>TB1, 6 = 0 Vdc***</td>
<td>TB1, 6 ≥ 10.4 Vdc</td>
<td>The sash input is greater than the maximum resistive input for the application, or the sash sensor signal cable is broken or loose.</td>
</tr>
<tr>
<td>Emergency exhaust override alarm (local)</td>
<td>Emerg Exh—Slow</td>
<td>Slow</td>
<td></td>
</tr>
<tr>
<td>Emerg Exh—Slow</td>
<td>Slow</td>
<td>TB1, 6 = 0 Vdc</td>
<td>The emergency exhaust button was pushed.</td>
</tr>
<tr>
<td>4 ≥ 10.4 Vdc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency exhaust override alarm (BMS external)</td>
<td>Emerg Exh—Fast</td>
<td>Slow</td>
<td></td>
</tr>
<tr>
<td>Emrg Exh—Fast</td>
<td>Slow</td>
<td>TB1, 6 = 0 Vdc***</td>
<td>The externally controlled emergency input is in emergency state.</td>
</tr>
<tr>
<td>4 ≥ 10.4 Vdc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy waste alert</td>
<td>FHM631 display—ENRG</td>
<td>Slow</td>
<td>The sash is open and room lights are off (FHM631 only).</td>
</tr>
<tr>
<td>Power fail alarm</td>
<td>Power loss LED on every 4 seconds</td>
<td>3 beeps every 10 seconds</td>
<td>N/A</td>
</tr>
<tr>
<td>Optional alarm</td>
<td>Optional alarm LED driven by customer</td>
<td>None</td>
<td>TB1, 6 = 0 Vdc</td>
</tr>
<tr>
<td>Loss of alarm line</td>
<td>Flow Alarm—Slow</td>
<td>Fast</td>
<td></td>
</tr>
<tr>
<td>631 Display—Blank</td>
<td>Slow</td>
<td>TB1, 6 = 12 Vdc</td>
<td>The alarm signal cable is broken.</td>
</tr>
<tr>
<td>Loss of feedback signal</td>
<td>Standard Operation—Solid Flow Alarm—Slow 631 Display—Low value</td>
<td>Slow</td>
<td>TB1, 6 = 0 Vdc</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* A fast blink rate resembles a flashing light, while a slow rate resembles a fluttering light.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** A fast beep rate is 10 beeps per second, while a slow rate is 2 beeps per second.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** 5 Vdc will be detected when these alarms are generated by a Celeris system. If the fume hood monitor generates this condition first, the Celeris signal will supeceede after it is generated.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Guide
Use the information in the tables below to troubleshoot the X30 Series Fume Hood Monitor.

Variable Air Volume (VAV) Valve Systems (FHM430 and 631 only)

<table>
<thead>
<tr>
<th>Problem at Fume Hood Monitor</th>
<th>Voltage at TB1-6 in Monitor</th>
<th>Possible Cause/Solution</th>
</tr>
</thead>
</table>
| 1. The monitor is in flow alarm. | > 10 V 5 V | A. Low static pressure across valve
A. Loss of airflow—Check fan operation and duct blockage.
B. Too many sashes open at one time—Close sashes.
C. Valve failed open—Check pneumatic and mechanical connections.
B. Incorrect valve position
A. Valve failed open.
B. Sash open beyond the maximum allowable position—Lower sash.
C. A broken sash cable—Check all sash sensor connections.
C. Equipment/connection problems
A. Blocked or kinked pressure switch tubing—Correct tubing.
B. Wiring terminations between monitor and control device—Correct terminations.
C. Malfunctioning alarm circuits—Verify proper static.*
D. Monitor miscalibration—Recalibrate.* |

| 2. The monitor indicates normal operation, but the actual face velocity has been measured high or low. | 0 V | A. Low static pressure
A. Differential pressure between the pressure switch set point and the low end of the static pressure operating range [i.e., 0.3” and 0.6” wc (75-150 Pa) for medium pressure valves] will not trip the alarm circuit.
B. Measure differential pressure. If it is low, see Possible Cause/Solution 1A above.
B. Monitor miscalibration—Recalibrate.* |

| 3. The monitor has malfunctioned.
- No display.
- Cannot mute alarm. | Voltages may vary. | A. Loss of power
A. Check power at monitor TB4-1 (24 Vac H/+15 Vdc) and TB4-3 (24 Vac N/-15 Vdc).
B. Check wiring connections at monitor, valve, and power supply.
C. Verify power supply has input voltage (120 Vac or 240 Vac).
B. Defective monitor—Replace board on monitor.* |

| 4. The flow remains constant through sash travel. | Voltages may vary. | A. Broken sash sensor cable—Replace sensor.
B. Monitor miscalibration—Recalibrate.* |

* Contact Phoenix Controls Product Support Center for assistance.

Constant Volume (CV) and Two-state Valve Systems (FHM530)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause/Solution</th>
</tr>
</thead>
</table>
| 1. The monitor is in flow alarm. | Low static pressure across valve.
A. Loss of airflow. Check fan operation and duct blockage.
B. Blocked or kinked pressure switch tubing. Correct the tubing.
A. Incorrect valve position. Realign the pivot arm.
B. Incorrect valve position. Check pneumatic tubing and pressure. Also check solenoid valve operation. |
Variable Air Volume (VAV) Drive Systems (FHM430 and 631 only)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause/Solution</th>
</tr>
</thead>
</table>
| 1. The monitor is in flow alarm. | A. Loss of airflow
• Check fan operation and duct blockage.
• Check the drive for proper operation.
B. Monitor/connection problems
• The wiring terminations between monitor and control device are incorrect. Correct the terminations.
• The monitor was miscalibrated. Recalibrate the monitor as needed.*
• The monitor is defective. Replace the board on the monitor.* |
| 2. The monitor indicates normal operation, but actual face velocity has been measured high or low. | The monitor was miscalibrated. Recalibrate the monitor as needed.* |
| 3. The monitor is malfunctioning.
• No display
• Cannot mute alarm | A. Loss of power
• Check the wiring connections at the monitor, drive and power supply.
• Verify that the power supply has input voltage.
• Check power at the monitor.
B. The monitor is defective. Replace the board on the monitor. Recalibrate the monitor as needed.* |

* Contact Phoenix Controls Product Support Center for assistance.

Energy-saving Options (FHM631 only)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause/Solution</th>
</tr>
</thead>
</table>
| 1. The monitor will not enter energy waste alert. | A. The low-light level setting is too high. Recalibrate the monitor.
B. The energy waste alert is not enabled. Recalibrate the monitor. |
| 2. The monitor will not exit energy waste alert. | The high-light level setting is too high. Recalibrate the monitor. |
| 3. The monitor will not enter decommission mode. | A. The sash is not fully closed. Close the sash.
B. Decommission mode is not enabled. Recalibrate the monitor.
C. Check the wiring to the valve. |
| 4. The monitor will not exit decommission mode. | A. The digital input (DI) on the valve is not configured properly. Reconfigure this input.
B. The monitor is defective. Replace and recalibrate the monitor. |